- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000100003000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Paquette, Courtney (4)
-
Davis, Damek (2)
-
Drusvyatskiy, Dmitriy (2)
-
Bartlett, Peter L (1)
-
Berthet, Quentin (1)
-
Blondel, Mathieu (1)
-
De_Bortoli, Valentin (1)
-
Doucet, Arnaud (1)
-
Korba, Anna (1)
-
Llinares-Lopez, Felipe (1)
-
MacPhee, Kellie J. (1)
-
Marion, Pierre (1)
-
Scheinberg, Katya (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 5, 2026
-
Paquette, Courtney; Scheinberg, Katya (, SIAM Journal on Optimization)null (Ed.)
-
Davis, Damek; Drusvyatskiy, Dmitriy; MacPhee, Kellie J.; Paquette, Courtney (, Journal of Optimization Theory and Applications)
-
Davis, Damek; Drusvyatskiy, Dmitriy; Paquette, Courtney (, IMA Journal of Numerical Analysis)Abstract We consider a popular nonsmooth formulation of the real phase retrieval problem. We show that under standard statistical assumptions a simple subgradient method converges linearly when initialized within a constant relative distance of an optimal solution. Seeking to understand the distribution of the stationary points of the problem, we complete the paper by proving that as the number of Gaussian measurements increases, the stationary points converge to a codimension two set, at a controlled rate. Experiments on image recovery problems illustrate the developed algorithm and theory.more » « less
An official website of the United States government
